ABI Bioinformatics Guide 2024
  • INTRODUCTION
    • How to use the guide
  • MOLECULAR BIOLOGY
    • The Cell
      • Cells and Their Organelles
      • Cell Specialisation
      • Quiz 1
    • Biological Molecules
      • Carbohydrates
      • Lipids
      • Nucleic Acids (DNA and RNA)
      • Quiz 2
      • Proteins
      • Catalysis of Biological Reactions
      • Quiz 3
    • Information Flow in the Cell
      • DNA Replication
      • Gene Expression: Transcription
      • Gene Expression: RNA Processing
      • Quiz 4
      • Chromatin and Chromosomes
      • Regulation of Gene Expression
      • Quiz 5
      • The Genetic Code
      • Gene Expression: Translation
    • Cell Cycle and Cell Division
      • Quiz 6
    • Mutations and Variations
      • Point mutations
      • Genotype-Phenotype Interactions
      • Quiz 7
  • PROGRAMMING
    • Python for Genomics
    • R programming (optional)
  • STATISTICS: THEORY
    • Introduction to Probability
      • Conditional Probability
      • Independent Events
    • Random Variables
      • Independent, Dependent and Controlled Variables
    • Data distribution PMF, PDF, CDF
    • Mean, Variance of a Random Variable
    • Some Common Distributions
    • Exploratory Statistics: Mean, Median, Quantiles, Variance/SD
    • Data Visualization
    • Confidence Intervals
    • Comparison tests, p-value, z-score
    • Multiple test correction: Bonferroni, FDR
    • Regression & Correlation
    • Dimentionality Reduction
      • PCA (Principal Component Analysis)
      • t-SNE (t-Distributed Stochastic Neighbor Embedding)
      • UMAP (Uniform Manifold Approximation and Projection)
    • QUIZ
  • STATISTICS & PROGRAMMING
  • BIOINFORMATICS ALGORITHMS
    • Introduction
    • DNA strings and sequencing file formats
    • Read alignment: exact matching
    • Indexing before alignment
    • Read alignment: approximate matching
    • Global and local alignment
  • NGS DATA ANALYSIS & FUNCTIONAL GENOMICS
    • Experimental Techniques
      • Polymerase Chain Reaction
      • Sanger (first generation) Sequencing Technologies
      • Next (second) Generation Sequencing technologies
      • The third generation of sequencing technologies
    • The Linux Command-line
      • Connecting to the Server
      • The Linux Command-Line For Beginners
      • The Bash Terminal
    • File formats, alignment, and genomic features
      • FASTA & FASTQ file formats
      • Basic Unix Commands for Genomics
      • Sequences and Genomic Features Part 1
      • Sequences and Genomic Features Part 2: SAMtools
      • Sequences and Genomic Features Part 3: BEDtools
    • Genetic variations & variant calling
      • Genomic Variations
      • Alignment and variant detection: Practical
      • Integrative Genomics Viewer
      • Variant Calling with GATK
    • RNA Sequencing & Gene expression
      • Gene expression and how we measure it
      • Gene expression quantification and normalization
      • Explorative analysis of gene expression
      • Differential expression analysis with DESeq2
      • Functional enrichment analysis
    • Single-cell Sequencing and Data Analysis
      • scRNA-seq Data Analysis Workflow
      • scRNA-seq Data Visualization Methods
  • FINAL REMARKS
Powered by GitBook
On this page
  • Seurat
  • scanpy

Was this helpful?

  1. NGS DATA ANALYSIS & FUNCTIONAL GENOMICS
  2. Single-cell Sequencing and Data Analysis

scRNA-seq Data Visualization Methods

PreviousscRNA-seq Data Analysis WorkflowNextFINAL REMARKS

Last updated 5 months ago

Was this helpful?

Visualizing single-cell RNA-seq (scRNA-seq) data is crucial for understanding the complex patterns and relationships within cellular populations. Effective visualization techniques help in identifying clusters, discovering new cell types, and interpreting differential expression results. We have already explored some visualization methods in the basic scRNA-seq data analysis workflow tutorials. For a deeper dive into various visualization techniques, you can follow the tutorials below.

Seurat

scanpy

Analysis, visualization, and integration of Visium HD spatial datasets with Seurat
Logo
Core plotting functions — scanpy-tutorials 0.1.dev50+g203afb9 documentation
Logo