ABI Bioinformatics Guide 2024
  • INTRODUCTION
    • How to use the guide
  • MOLECULAR BIOLOGY
    • The Cell
      • Cells and Their Organelles
      • Cell Specialisation
      • Quiz 1
    • Biological Molecules
      • Carbohydrates
      • Lipids
      • Nucleic Acids (DNA and RNA)
      • Quiz 2
      • Proteins
      • Catalysis of Biological Reactions
      • Quiz 3
    • Information Flow in the Cell
      • DNA Replication
      • Gene Expression: Transcription
      • Gene Expression: RNA Processing
      • Quiz 4
      • Chromatin and Chromosomes
      • Regulation of Gene Expression
      • Quiz 5
      • The Genetic Code
      • Gene Expression: Translation
    • Cell Cycle and Cell Division
      • Quiz 6
    • Mutations and Variations
      • Point mutations
      • Genotype-Phenotype Interactions
      • Quiz 7
  • PROGRAMMING
    • Python for Genomics
    • R programming (optional)
  • STATISTICS: THEORY
    • Introduction to Probability
      • Conditional Probability
      • Independent Events
    • Random Variables
      • Independent, Dependent and Controlled Variables
    • Data distribution PMF, PDF, CDF
    • Mean, Variance of a Random Variable
    • Some Common Distributions
    • Exploratory Statistics: Mean, Median, Quantiles, Variance/SD
    • Data Visualization
    • Confidence Intervals
    • Comparison tests, p-value, z-score
    • Multiple test correction: Bonferroni, FDR
    • Regression & Correlation
    • Dimentionality Reduction
      • PCA (Principal Component Analysis)
      • t-SNE (t-Distributed Stochastic Neighbor Embedding)
      • UMAP (Uniform Manifold Approximation and Projection)
    • QUIZ
  • STATISTICS & PROGRAMMING
  • BIOINFORMATICS ALGORITHMS
    • Introduction
    • DNA strings and sequencing file formats
    • Read alignment: exact matching
    • Indexing before alignment
    • Read alignment: approximate matching
    • Global and local alignment
  • NGS DATA ANALYSIS & FUNCTIONAL GENOMICS
    • Experimental Techniques
      • Polymerase Chain Reaction
      • Sanger (first generation) Sequencing Technologies
      • Next (second) Generation Sequencing technologies
      • The third generation of sequencing technologies
    • The Linux Command-line
      • Connecting to the Server
      • The Linux Command-Line For Beginners
      • The Bash Terminal
    • File formats, alignment, and genomic features
      • FASTA & FASTQ file formats
      • Basic Unix Commands for Genomics
      • Sequences and Genomic Features Part 1
      • Sequences and Genomic Features Part 2: SAMtools
      • Sequences and Genomic Features Part 3: BEDtools
    • Genetic variations & variant calling
      • Genomic Variations
      • Alignment and variant detection: Practical
      • Integrative Genomics Viewer
      • Variant Calling with GATK
    • RNA Sequencing & Gene expression
      • Gene expression and how we measure it
      • Gene expression quantification and normalization
      • Explorative analysis of gene expression
      • Differential expression analysis with DESeq2
      • Functional enrichment analysis
    • Single-cell Sequencing and Data Analysis
      • scRNA-seq Data Analysis Workflow
      • scRNA-seq Data Visualization Methods
  • FINAL REMARKS
Powered by GitBook
On this page

Was this helpful?

  1. NGS DATA ANALYSIS & FUNCTIONAL GENOMICS
  2. File formats, alignment, and genomic features

Sequences and Genomic Features Part 3: BEDtools

PreviousSequences and Genomic Features Part 2: SAMtoolsNextGenetic variations & variant calling

Last updated 5 months ago

Was this helpful?

BED (Browser Extensible Data) files are simple text files that define genomic regions of interest, such as genes, exons, or regulatory elements. They consist of columns specifying chromosome, start position, end position, and optional annotations. BED files are widely used for tasks like visualizing regions in genome browsers, performing feature-based analyses, and comparing genomic intervals.

EDtools is a set of utilities often referred to as the "Swiss Army knife" of genomics. It enables a wide range of tasks, including intersecting, merging, and analyzing genomic intervals. To deepen your understanding of BEDtools and its applications in bioinformatics, watch the following videos from the Coursera course and return here to continue.

  • ​​

  • ​​

Now, read and complete the .

Materials

You can use the following files, which are similar to the examples presented in the video.

The bed files are stored in the following directory on the server:

bed/

Sequences and Genomic Features 9: BEDtools I
Sequences and Genomic Features 10: BEDtools II
the instructions
practice quiz